
Thin-Walled Structures 70 (2013) 39–48
Contents lists available at SciVerse ScienceDirect
Thin-Walled Structures
0263-82
http://d

n Corr
E-m
1 Co
journal homepage: www.elsevier.com/locate/tws
Instability of a cracked cylindrical shell reinforced by an elastic liner

Y.T. Kim a,1, B. Haghpanah a,1, R. Ghosh a, H. Ali b, A.M.S. Hamouda c, A. Vaziri a,n

a Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
b FM Global, Norwood, MA 02062, USA
c Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
a r t i c l e i n f o

Article history:
Received 6 February 2013
Received in revised form
18 April 2013
Accepted 18 April 2013

Keywords:
Buckling
Eigenvalue analysis
Cracked cylindrical shells
Elastic liners
Finite element method
31/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.tws.2013.04.008

esponding author. Tel.: +1 6172706813.
ail addresses: vaziri@coe.neu.edu, avaziri2@gm
ntributed equally to this work.
a b s t r a c t

Elastic liners are used for in situ repair and retrofitting of pipes as a cost effective alternative to the
replacement of damaged parts and sections. In this paper, we studied the role of an elastic liner on the
buckling behavior of a cracked cylindrical shell using finite element method. A special meshing scheme
that could mimic the stress singularity at the crack tip was employed to model the cracked shells. Linear
eigenvalue analysis was carried out to study the effect of crack geometry (length and orientation) as well
as the material properties and thickness of the elastic liner on the buckling load and buckling shape of
the cylindrical shell. We considered a combination of axial compression and internal pressure which is a
typical loading for pipelines and pressurized liquid-retaining structures. Our results show that cracked
shell's strength and mode of buckling for different crack length and orientations can be largely influenced
by thickness and relative stiffness of the liner layer. In particular we report a gradual transition from local
to global instability due to these size and orientation effects. Finally, the role of internal pressure on
structural stability and local buckling of cracked shells, which strongly depends on the crack orientation
and liner thickness, is discussed.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled shells are widely employed in pipelines, air- and
space-crafts, marine structures, large dams, shell roofs, liquid-
retaining structures and cooling towers [1,2]. In light of such
widespread practical applications, it is important to investigate the
failure behavior of these structures in order to compute safe
envelopes of operations. Due to slenderness of their structure,
buckling failure is one of the most common modes of failure.
Presence of defects, particularly cracks in thin-walled structures
may severely decrease their resistance to buckling and undermine
structural stability [3–24]. When crack-induced damage is deemed
sufficient to either compromise the structure load bearing capacity
or make collapse imminent, the structural integrity must be
restored to continue operation. The most direct approach to
restore the load carrying capacity of a typical cracked structure
is of course to replace the damaged component. However, this
approach is often prohibitively expensive and worse, in many
cases difficult to execute due to difficulty in physically accessing
the damaged components. In addition, this procedure often leads
to prolonged interruption in the service and usability of the
structure, imposing additional operating costs.
ll rights reserved.
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In light of the above mentioned difficulties, alternative approaches
have been proposed in recent years for retrofitting the damaged thin-
walled structures by repairing and/or strengthening the shell struc-
ture wall in the damaged region using supportive liners. These in situ
repair techniques are generally based on methods which provide
engagement between the inserted liner and the existing pipe.
Although such reinforcements seem to intuitively suggest strength-
ening of the structure against buckling, a systematic investigation of
the mechanics of such reinforcements is necessary to make accurate
prognosis as well as quantifiable design recommendations. In the
current work, we address the elastic stability issue of a typical
reinforced cracked shell structure through a finite element (FE) based
numerical approach. A brief discussion on the pertinent literature in
this area follows.

Elastic stability of thin walled cracked un-reinforced shells has
been a subject of considerable academic scrutiny in the past.
Earlier, El Naschie [25] focused on the buckling of circular
cylindrical shells with a circumferential crack. The buckling load
of these cracked shells is shown to be half of that of a correspond-
ing pristine cylinder. Thereafter, notable theoretical analysis of
stability was undertaken by Dyshel [26] who investigated the local
instability issues of a circumferentially cracked shell under tensile
loading by assuming infinitely long linear elastic, homogeneous
cylinder with a shallow shell approximation to simplify the
governing differential equations. Complex analysis was then used
followed by the collocation method to obtain numerical solutions.
Although the calculations are rigorous, they are somewhat tedious
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even for this simplified case and can become intractable when
applied to more realistic highly curved, layered or composite
structures. These computational difficulties motivated an increas-
ing focus towards more extensive numerical methods such as the
FE based approaches. Estekanchi and Vafai [9] developed a
computational model to address the specific FE meshing issues
stemming from the presence of a crack on the shell surface. The
development of this model greatly aided extensive FE based
parametric studies of cracked shells wherein critical defect para-
meters such as crack length and orientation could be conveniently
and accurately varied. They utilized this meshing scheme to carry
out FE based bifurcation analysis for a variety of crack sizes and
orientations on unreinforced cylindrical shells under axial tension
and compression loading. In particular they reported that the
buckling mode of a cylindrical shell with a circumferential crack
changes with crack length. The reduction of the load carrying
capacity of the structure due to the crack was expressed in terms
of an analytical expression based on the extensive parametric
analysis carried out by the authors. More recently Vaziri and
Estekanchi [27] utilized the above mentioned meshing scheme
to investigate the behavior of cracked cylindrical shells under
combined internal pressure and axial compression. They consid-
ered through and thumbnail cracks. The effect of crack orientation
and internal pressure on the buckling behavior of cracked shells
without elastic liners was studied. Their results showed that
depending on the length, orientation and the internal pressure,
local buckling may precede the global buckling of the cylindrical
shell. In general, internal pressure increases the buckling load
associated with the global buckling mode while for the local
buckling modes, the effect of internal pressure depends critically
on the crack orientation. This analysis was further extended to
study the buckling behavior of composite shells by Vaziri [28]. The
study clearly indicated the role of material anisotropy can be
utilized to minimize the reduction in load bearing capacity of the
structure. These above mentioned FE based approaches were
further extended by Haghpanah et al. to study the buckling
behavior of cracked cylinders with multiple parallel cracks [29].
In their study the authors reported the existence of a minimum
cutoff interaction distance between cracks beyond which they do
not affect the buckling load.

These FE based investigations have clearly been successful in
addressing a host of issues not possible through analytical or semi-
analytical techniques. These FE models enable us to carry out
systematic and detailed numerical simulations of these structures
over a broad range of geometrical parameters and loading condi-
tions. This provides better insights into the structural performance
of cracked shells and allows identification of critical crack and
defect geometries as well as loading conditions that are most
detrimental to the performance of the system. It is noteworthy
that the previously discussed body of research did not address the
additional mechanical effects brought in by the reinforcing liner
used to repair damaged cylindrical structures. In this paper, we
study the buckling instability of cracked cylindrical shells with an
elastic liner, that resembles the configuration of a typical damaged
pipe retrofitted using a typical commercially available liner. The
loading condition considered is a combination of axial compres-
sion and internal pressure, which is the most common loading
condition in pipelines, liquid-retaining structures, and also often in
aerospace and marine structures. Detailed numerical simulations
are performed to study the effect of liner relative thickness and
stiffness on the overall buckling behavior of reinforced cracked
cylindrical shell. The role of crack length and orientation, as well
the effect of internal pressure on buckling behavior of the crack
cylindrical shells were studied.

The paper is organized as follows. We develop the computa-
tional model in Section 2; firstly a normalization scheme based on
buckling behavior of pristine uncracked shells is introduced. We
devote the next subsection to build the finite element model for
the cracked cylindrical shells with various crack lengths and
orientations using the meshing scheme proposed by Estekanchi
and Vafai [9]. This method accurately captures the crack-tip stress
intensity factor with relatively few elements and simplifies the
generation of numerical models of cracked shells enabling us to
run a comprehensive parametric study on the behavior of cracked
shells. Next, in Section 3 we discuss the results concerning
buckling loads under uniaxial compression over a wide range of
crack size and orientation, and for different reinforcement proper-
ties. Thereafter we highlight the effect of internal pressure on the
buckling behavior of cracked reinforced structure. Conclusions
follow in Section 4.
2. Computational model

In this section, the essential components of the computational
model which will be used to simulate the buckling behavior of the
cracked cylindrical shell are presented. To this end, first we
describe a normalization scheme for analyzing the numerical
simulation results and then the finite element (FE) model which
will be used to obtain the numerical results.

2.1. Normalization using buckling behavior of uncracked bi-layer
cylindrical shell

In this work, in addition to geometrical parameters such as
radius and thickness of the cylinder as well as material parameter
like elastic modulus, we selected the theoretical buckling load of a
geometrically analogous uncracked shell Fth the normalizing
parameter. Thus, we use the ratio of FE calculated critical buckling
load of the cracked cylinder Fc to Fth as a natural non-dimensional
parameter for this problem. We call this parameter the normalized
buckling load γ ¼ Fc=Fth and its derivation is explained below.

We note that analytical and semi-analytical calculation of
critical buckling load for single layered cylindrical shells is a
classical problem [30]. In addition, the extended problem of
stability of multilayered shells have been traditionally analyzed
in the context of anisotropic laminate and fiber reinforced com-
posites, functionally graded materials under mechanical loading
[31] and bi-metallic shells under thermo-mechanical loading [32].
For clarity, the derivation of buckling load and buckling behavior
of an isotropic liner-reinforced cylindrical shell under purely
mechanical compressive force is briefly explained below.

We start by assuming that the buckling shape of the bi-layer
cylinder is in the form of axisymmetrical sinusoidal pattern
observed in the buckling of long uniform cylinders under axial
compression. The reinforced cylindrical shell is modeled as an
elastic isotropic bi-layer lamina, with the two layers having
different elastic moduli and same Poisson's ratio. The thickness
and elastic modulus of the outer metallic shell and inner poly-
meric liner are denoted by t; E and tp; Ep respectively. The radius
of the cylinder, defined as the distance between center and the
neutral surface, is denoted by R (see Fig. 1A).

At each shell cross section, the axes x, y and z are oriented along
the longitudinal, tangential and radial direction of the cylinder,
respectively, with their origin on the neutral surface. We consider
an element cut out of the composite lamina by two pairs of planes
parallel to the xz and yz planes as shown in Fig. 1(B). The bending
neutral surface in the shell–liner lamina can be determined by
loading the composite layer to pure uniaxial bending. Under this
loading, planes perpendicular to neutral surface are assumed to
remain planar and perpendicular to the neutral surface even after
deformation. Under pure bending, the requirement of zero axial



Fig. 1. (A) Axisymmetrical buckling mode shape of a cylindrical shell with an elastic liner under axial compression. (B) The element cut out of the cylindrical shell by two
pairs of planes parallel to the xy and yz planes.
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force allows us to calculate the distance d (positive outward) of the
neutral surface from the shell–liner interface:

d¼ ðt=2ÞEt þ ð−tp=2ÞEptp
Et þ Eptp

¼ t
2

1−ðtp=tÞ2ðEp=EÞ
1þ ðtp=tÞðEp=EÞ

 !
ð1Þ

Now, let the curvatures of the neutral surface in sections
parallel to the zx and yz planes be χx ¼ 1=ρx ¼ −∂2w=∂x2 and
χy ¼ 1=ρy ¼ −∂2w=∂y2, respectively, with positive curvature corre-
sponding to bending which is convex down and w denoting the
deflection of the plate. Then, the unit elongations in the x and y
directions of an elemental lamina at zdistance from the neutral
surface can be found as εx ¼ z=ρx and εy ¼ z=ρy. From Hooke's law
the corresponding x and y normal stresses are sx ¼ EðzÞðzð1=ρxÞþ
vð1=ρyÞÞ=ð1−v2Þ and sy ¼ EðzÞzðð1=ρyÞ þ vð1=ρxÞÞ=ð1−v2Þ, wherev is
Poission’s ratio of both shell and liner and EðzÞ is Young’s modulus
at distance z. The bending moment per unit length of the edges
parallel to the y-axis, denoted by Mx, can be expressed as

Mx ¼
Z t−d

−tp−d
zsydz¼

Z t−d

−tp−d
EðzÞz2 1

ρy
þ v

1
ρx

 !
=ð1−v2Þdz

¼D
1
ρx

þ v
1
ρy

 !
ð2Þ

and similarly for My

My ¼
Z t−d

−tp−d
zsx dz¼

Z t−d

−tp−d
EðzÞz2 1

ρx
þ v

1
ρy

 !
=ð1−v2Þdz

¼D
1
ρy

þ v
1
ρx

 !
ð3Þ

where D is the flexural rigidity of the lamina given by

D¼
Z −d

−tp−d
Epz2=ð1−v2Þdzþ

Z t−d

−d
Ez2=ð1−v2Þdz

¼ ðEI0 þ EpI
0
pÞ=ð1−v2Þ ð4Þ

here I0 ¼ R t−d
−d z2 dz, I0p ¼

R −d
−tp−d

z2 dz denote the second moment of

area of the shell and liner cross sections around the neutral axis
(superscript 0 denotes the values are measured from the neutral
axis of the shell–liner compound layer).
Similarly, the resultant forces acting in the neutral surface of
the shell can be obtained as

Nx ¼
Z t−d

−tp−d
sx dz¼ ðEt þ EptpÞ

ε1 þ vε2
1−v2

Ny ¼
Z t−d

−tp−d
sy dz¼ ðEt þ EptpÞ

ε2 þ vε1
1−v2

Nxy ¼
Z t−d

−tp−d
τxy dz¼ ðEt þ EptpÞ

γ

2ð1þ vÞ ð5Þ

where ε1, ε2 and γ12 (not to be confused with the non-dimensional
buckling load γ introduced earlier) are the x, y normal and xy
shearing strains of the neutral surface respectively.

The strain energy in an element of the lamina due to Mx dy and
My dx bending moments and Mxy dx and Mxy dy twist moments
can be calculated as the product of the components of moment
and the angle between the sides of the element after bending. The
total bending work in the lamina is obtained by integrating the
strain energy over the thickness of the lamina [30]

Ub ¼ 1=2D
Z Z

∂2w
∂x2

þ ∂2w
∂y2

� �2

−2ð1−νÞ ∂2w
∂x2

∂2w
∂y2

−
∂2w
∂x∂y

� �2" #( )
dx dy

ð6Þ

Also the stretching (membrane) energy due to stretching of the
neutral surface in the lamina is Us ¼∬1

2ðNxε1 þ Nyε2 þ NxyγÞdA.
Substituting from Eq. (5), the stretching energy can be obtained
as [30]

Us ¼
ðEt þ EptpÞ
2ð1−v2Þ

Z Z
ðε1 þ ε2Þ2−2ð1−vÞðε1ε2−

1
4
γ212Þ�dx dy ð7Þ

The total energy of deformation is obtained by adding together
expressions (6) and (7). Similar to buckling of uniform cylindrical
shells under axial compression, the cylindrical shell with elastic
liner is assumed to buckle axisymmetrically under axial compres-
sion (see Fig. 1A). Assuming an axisymmetric buckling deforma-
tion, the radial displacement of the cylinder during buckling to be
w¼ −A sin ðmπx=lÞ with a buckling wavelength 2l=m, the x curva-
ture of the deformed lamina would be χx ¼ −∂2w=∂x2 ¼
−Aðm2π2=l2Þ sin ðmπx=lÞ and the y curvature and xy twist of
the lamina are zero (γ12 ¼ χy ¼ χxy). The increase of strain
energy during buckling, ΔU ¼ΔUs þ ΔUb, can be found from
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Eqs. (6) and (7) as

ΔU ¼−2πðEt þ EptpÞvε0
Z l

0
A sin

mπx
l

dxþ πA2ðEt þ EptpÞl
2R

þA2 π
4m4

2l4
πRlD ð8Þ

where ε0 denotes the axial strain before buckling, ε0 ¼
−Ncr=ðEt þ EptpÞ, and Ncr denotes the critical value of compressive
force per unit length. The work done by compressive forces during
buckling can be obtained as amount of axial force, F ¼ 2πaNcr ,
times the amount of axial shrinkage of the neutral surface,
which can be estimated from Δx¼ 1

2

R l
0 ðdw=dxÞ2−vðw=aÞ
h i

dx. This
yields [30]

ΔT ¼ 2πNcr v
Z l

0
A sin

mπx
l

dxþ R
4
A2 m2π2

l
dx

 !
ð9Þ

Equating expressions (8) and (9), we obtain

Ncr ¼D
m2π2

l2
þ Et þ Eptp

R2D

l2

m2π2

 !
ð10Þ

The minimum value of the above expression occurs at

mπ=l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEt þ EptpÞ=ðR2DÞ4

q
with buckling wavelength Γ ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2D=ðEt þ EptpÞ4
q

. The associated buckling force of the bi-layer

cylinder is obtained as

Fth ¼ 2πRNcr ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEt þ EptpÞD

q
ð11Þ

Substituting from Eq. (4), the theoretical buckling load of
a bi-layer elastic cylinder is obtained as Fth ¼ Fsthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ðEptp=EtÞÞð1þ ðEpt3p=Et3ÞÞ þ 3ð1þ ðtp=tÞÞ2 Eptp=Et

� �q
, where

Fsth ¼ 2π=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1−v2Þ

p
Et2 is the classical buckling load of a long single-

layered unflawed cylindrical shell under axial compression. Fig. 2
(A) graphically shows the normalized buckling load contours of the
reinforced cylindrical shell, defined as Fth ¼ Fth=F

s
th, as a function of

thickness ratio, tp=t, and stiffness ratio, Ep=E, of polymeric layer to
cylindrical shell. The incremental gain in buckling load is increased
remarkably as the thickness as well as stiffness of the liner increases.
Fig. 2B displays the wavelength contours of a cylindrical shell with
liner, plotted for different values of thickness ratio, tp=t, and stiffness
ratio, Ep=E, of the elastic liner to the cylindrical shell. The results are

presented in a non-dimensional form, Γ, where the buckling
Fig. 2. (A) Buckling load of a perfect cylindrical shell with polymeric liner normalized by
to cylindrical shell thickness and stiffness ratio. (B) Buckling wavelength of a perfect cy
cylinder without liner for different values of polymeric layer to cylindrical shell thickne
wavelength of the reinforced cylinder is normalized by the buckling
wavelength of the counterpart cylindrical shell with no elastic liner
reinforcement. This completes our analytical treatment of uncracked
bi-layer cylinders.
2.2. Finite element model of the cracked cylinders

In this subsection, we describe the FE based numerical model of
bilayer cracked cylindrical shells. The cracked cylinder considered
has a length of L¼2 m, radius R¼0.2 m and a thickness of
t¼1.2 mm. The shell is meshed using the meshing scheme
discussed before by Estekanchi and Vafai [9]. In this mesh zooming
technique, the FE mesh is uniform far from the crack tip and gets
progressively refined in the crack tip area (see Fig. 2). The zooming
level in this scheme denotes the number of element layers
surrounding the crack tip with reduced element size compared
to the uniform element size in the uncracked region. The zooming
factor denotes the relative size (both length and width) of the
element at each element layer to the size of the element in the
previous element layer as approaching the crack tip. For meshing
the crack region, the zooming factor of 1/2 and zooming level of
6 were used. This zooming factor results in the crack tip element
size 1/64 of the element size far from the crack tip. The cylindrical
shell in the uncracked region was meshed into 150 elements in
each of the axial and circumferential directions. Fig. 3 shows
examples of the FE mesh for circumferentially and longitudinally
cracked cylinders developed based on this meshing scheme. This
meshing scheme captures the singularity of stresses in the crack
tip region with high fidelity, while simultaneously allowing crea-
tion of many models with various crack length and orientation
required for parametric studies and reducing the computational
complexity. Shells with different crack lengths, a, and crack
orientations, α – where α¼0 denotes the circumferential direction
– were meshed using a MATLAB based code and imported into
Abaqus, a commercially available FE software. The elastic liner was
modeled as an uncracked cylindrical shell of the same radius and
length as the cracked cylindrical shell. The size of the element for
meshing the cylindrical shell that represents the elastic liner was
uniform and equivalent to the element size of the cracked shell far
from the crack tip of the outer shell. Both the shell and elastic liner
were modeled using eight-node shell elements (S8R) with reduced
integration and quadratic shape functions. Mesh sensitivity analysis
the buckling load of the cylinder without liner for different values of polymeric layer
lindrical shell with polymeric liner normalized by the buckling wavelength of the
ss and stiffness ratio.



Fig. 3. Computational models of a cylindrical shell with (A) a circumferential crack and (B) a longitudinal crack developed by employing a special meshing scheme at the
crack region, proposed by Estekanchi and Vafai [9].
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was performed to verify that the results were independent of the
mesh size.

Eigenvalue analysis using a linear eigenvalue solver was carried
out to obtain the buckling load and mode shapes of the cracked
cylindrical shells under combined axial compression and internal
pressure. For the cracked shells, we assumed a linear isotropic
elastic material with Young’s modulus, E¼69 GPa and Poisson’s
ratio, ν¼0.35 (typical properties for aluminum). For the elastic
liner, we considered a wide range of liner material stiffness. It
should be noted that during the repair process of damaged pipes, a
liner with smaller diameter is inserted into the damaged section of
the host pipe. A close-fit between the liner and the native shell
structure is generally achieved by applying pressure and heat. This
is modeled as a no-slip interface condition between the liner and
shell and an axially fixed boundary condition at one end of the
cylinder in our FE model.
3. Numerical results and discussions

In this section we describe the numerical results obtained from
the simulation the FE based model developed above. We start by
describing the buckling response of the cracked cylinder under
pure axial compression and then proceed to describe the influence
of internal pressure on the buckling behavior.

3.1. Cracked cylindrical shells with an elastic liner under axial
compression

Depending on the buckling mode shape, we have defined three
distinct deformation modes for the cracked reinforced shells:
global buckling mode where cracked shell has approximately the
same (within 95%) buckling load and similar mode shape as those
of the intact composite cylinder; (b) transition mode with a crack
which will affect both the buckling shape as well as the buckling
load, but the buckling deformation is still global and not fully
localized; (c) local mode with a localized buckling deformation
close to the crack region and very low buckling load compared to
the uncracked shell. Fig. 4A and B show the normalized buckling
load of a reinforced cylindrical shell with a single circumferential
crack (α¼ 01) and a longitudinal crack (α¼ 901), respectively
obtained from our FE calculations for a reinforced cylindrical
shells with Ep=E¼ 0:01. The buckling loads are presented for a
cracked cylindrical shell with different crack sizes, and reinforced
with liners of different thickness ratio tp=t. In Fig. 4A and B, we
plot the dependence of normalized buckling load of the reinforced
cylinder with normalized crack length for various liner thickness.
The results suggest that sufficiently small cracks have no signifi-
cant effect on the buckling behavior of a cylindrical shell, i.e. a
global form of buckling occurs at γ≈1 featuring axisymmetric

corrugations with wavelength Γ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2D=ðEt þ EptpÞ4

q
, where D

is the flexural rigidity of the shell. However, for the shells with
larger cracks, local buckling occurs and the buckling load of the
shell decreases significantly. The results also indicate that rein-
forced shells with a thicker liner have higher value of γ for a
prescribed crack length, and also the buckling strength of cylinders
with longitudinal cracks is more severely compromised due to the
presence of a crack of certain length compared to cylinders with
circumferential cracks. In next set of results, we summarized the
effect of relative stiffness of the elastic liner on the normalized
buckling load of cracked cylindrical shells. Fig. 5(A) and (B) show
the results for cylindrical shells with a circumferential and a
longitudinal crack of length ratio a=R¼ 0:2, respectively. Here,
normalized buckling loads are plotted for different values of
relative thickness as well as relative stiffness of the liner. The
simulations indicate that increasing the relative stiffness increases
the normalized buckling load and interestingly the buckling
behavior of a cracked shell may even be restored by using a liner
with appropriate thickness and stiffness. The buckling strength of
cylinders with longitudinal cracks is more sensitive to liner
material properties compared to cylinders with circumferential
crack when Ep=E≤0:05. Thus the reinforcement might be more
effective for cylinders with longitudinal cracks. For reinforced
shells with Ep=E≤0:05, the normalized buckling load is signifi-
cantly smaller for longitudinal cracks compared to the circumfer-
ential crack of same length (see Fig. 5A and B).

To further explore the effect of crack orientation, we have
considered cylindrical shells with a crack of length a=R¼ 0:2 and
four different orientations α¼ 01; 301; 601; and 901. The results
are summarized in Fig. 6A. Maximum normalized buckling load
was observed for cracks with α¼ 301 for lower value of Ep=E, as
shown by the numerical simulations. Local buckling mode shapes
for the case where a=R¼ 0:2 and Ep=E¼ 0:1 at four different angles



Fig. 4. Normalized buckling load (γ) of a reinforced cylindrical shell versus crack length ratio, (a/R) with a (A) circumferentially oriented crack (α¼0o) and (B) longitudinally
oriented crack (α¼90o) for different liner to shell thickness ratios, (tp/t). The elastic modulus ratio of the polymeric liner to the metallic shell is Ep=E¼ 0:01 for both set of
simulations.

Fig. 5. Normalized buckling load versus liner to shell Young’s modulus ratios, (Ep/E), for different liner to shell thickness ratios, (tp/t) of a reinforced cylindrical shell with a
(A) circumferential crack (α¼0o) and (B) longitudinal crack (α¼90o). The crack length to cylinders radius ratio is kept constant at a=R¼ 0:2 for the simulations.

Fig. 6. (A) Normalized buckling load of a lined cylindrical shell versus Ep/E for different crack angles at tp/t¼0.1 and 2.5. (B) Local buckling shapes at the cracked region for
four different crack orientations.

Y.T. Kim et al. / Thin-Walled Structures 70 (2013) 39–4844



Fig. 7. The maps showing the dominance of global, transitional and local buckling shapes in a lined cylindrical shell with a (A) circumferential and (B) longitudinal crack
based on Young’s modulus ratio, (Ep/E), and the thickness ratio, (tp/t).

Fig. 8. Critical crack length ratio (ac/R) versus Young’s modulus ratio, (Ep/E), for
different thickness ratios, (tp/t).
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are shown in Fig. 6B. For smaller values of α, buckling shapes are
similar with maximum outward and inward displacements occur-
ring at the crack tips and the deformation being approximately
symmetric with respect to the crack. For greater values of α, the
cracked cylinder bulges out symmetrically with respect to the
crack axis which is why cracked cylindrical shells with bigger
values of α are more sensitive to either relative thickness or
relative stiffness of the liner. In Fig. 7, we provide maps for
reinforced shells showing the dependence of buckling mode
shapes on the relative thickness, relative stiffness, and the crack
orientation. For identifying local, transition, and global shapes the
associated buckling loads were examined. A local buckling for the
cylinder was identified with a corresponding normalized buckling
load in the range of 0:95oγo1. The transition and the global
shapes of buckling were associated with normalized buckling
loads in the ranges of 0:85oγo0:95 and γo0:85, respectively.
The crack length to cylinders radius ratio is a=R¼ 0:2. By introdu-
cing a large enough crack, the buckling mode changes to local
buckling mode. We can define a critical crack length at each
orientation, ac , as the maximum crack length leading to a global
buckling shape. In Fig. 8, we have shown the dependence of the
critical crack length on the relative stiffness as well as the relative
thickness of the liner. The results suggest that a higher value of
liner relative thickness leads to a larger value of critical crack
length. Also, by increasing the relative stiffness the critical crack
length increases.

In Fig. 9A and B we plot the normalized buckling loads versus
the stretching stiffness ratio Eptp=Et for five different elastic liner
thicknesses. The crack length to cylinders radius ratio is a=R¼ 0:2.
The broken lines represent trends of the normalized buckling load
of the reinforced crack shell with different crack orientations. In
Fig. 9A, the broken lines represent the trend from FE results of the
crack orientations of 0o and 30o, respectively. In Fig. 9B, the broken
lines represent the trend from FE results of the crack orientations
of 0o and 60o, respectively. From both plots, it is clear that
increasing the stretching modulus unambiguously improves the
buckling load for all crack orientation. However, as the compara-
tive plots of Fig. 8A and B show, a crack oriented at 60o although
weakens the buckling characteristic more than a corresponding
crack oriented at 0o or 30o results in a much faster recovery of
strength when the stretching modulus of the liner is increased.
Interestingly, when we plot the normalized buckling loads versus
the stretching modulus for an axial (i.e. 90o) crack, the data points
do not collapse into a single curve particularly at the lower end of
the stretch modulus. This suggests that at lower values of
membrane stretch modulus, the thickness ratio itself may be an
important buckling parameter for an axial crack.

3.2. Role of internal pressure

The computational model is next used to study the effect of
internal pressure on the first buckling mode due to axial compres-
sion of the cracked shell–elastic liner combination described ear-
lier with different crack orientations. We define a normalized
loading parameter, λ¼ 2πR2P=F , where P denotes the internal
pressure applied to the inside surface of the elastic liner and F
denotes the total axial force applied to the shell. The effect of the
internal pressure on the normalized buckling load of cylindrical
shells combined with an elastic liner for various crack orientations
are depicted in Fig. 10. Fig. 10A shows the dependence of the
normalized buckling loads of the circumferential cracked cylind-
rical shells reinforced with an elastic liner on the normalized
loading parameter λ, for four different liner thickness, tp/t¼0, 0.25,
1, and 2.5. The buckling modes of the elastic liner-reinforced
cylindrical shells with a through circumferential crack show local



Fig. 9. (A) and (B) Normalized buckling loads versus normalized stretching stiffness of the reinforced cylindrical shell with a crack for different liner to cylindrical shell
thickness ratios, (tp/t), at the crack orientations of 01, 301 (top left), 01, 601 (top right).

Fig. 10. (A)–(D) Normalized axial buckling load, γ, of a lined cracked cylindrical shell under uniform internal pressure versus the normalized loading parameter, λ, for
different liner to shell thickness ratios, (tp/t), at crack angles of α¼0o, 30o, 60o and 90o.
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buckling modes at the low internal pressure zone. For this case we
also found that the buckling load associated with the first buckling
mode sharply increased from the low internal pressure to high
internal pressure region for all of elastic thickness ratios. This can
be explained in terms of additional stiffening effect provided by
the internal pressure acting on the underlying liner.

Next, we study the effect of crack angle on the buckling
behavior of cracked cylindrical shells under combined internal
pressure and axial compression for two crack angles: 30o and 60o.
Fig. 10B and C depict the dependence of normalized buckling load
on the normalized pressure loading parameter λ for crack angles
30o and 60o, respectively. We find that when the crack angle is 30o,
the normalized buckling load rapidly increases in the low pressure
regime. Thus, in this regime, the internal pressure helps to
strengthen the buckling strength of the structure. However, quite
interestingly, beyond a sufficiently high pressure load, the buck-
ling strength sharply diminishes for both cases. For a crack angle of
30o, this inflection point was found to occur at normalized load
value of λ¼ λcr ¼ 2. This critical value of inflection is reached even
earlier for cracks oriented at 60o. By the time the crack orientation
becomes vertical (see Fig. 10D), this inflection almost disappears
with λcr⪡1. Thus we conclude that any beneficial effect of internal
pressure on the buckling load occurs at progressively lower
pressures as the crack becomes oriented more axially.

To explain the effect of internal pressure on the local buckling
of the reinforced cylindrical shells, Vaziri and Estekanchi [27]
introduced two mechanisms: (1) the local disturbance of the stress
field, in combination with the induced local compressive stress at
the crack edges, which tends to decrease the local buckling loads
(the dominant effect for axially cracked shells); (2) the stabilizing
effect of the internal pressure, which tends to suppress the lower
buckling mode of cylindrical shells (the dominant effect for
circumferentially cracked shells). Thus, the relative influence of
these two mechanisms on the local buckling behavior of cracked
cylindrical shells combined with an elastic liner depends on the
crack orientation and the internal pressure. For a cracked cylind-
rical shell with a crack oriented at 30o under relatively low
pressure, λo2, the former mechanism associated with the internal
pressure dominates the buckling behavior of the shells. By
increasing the internal pressure, the buckling load associated with
the first local buckling mode of the cylindrical shell reduces
considerably (Fig. 10(B)). For a crack oriented at 60o from the
circumferential line, the second mechanism dominates the local
buckling of the cylindrical shells and the internal pressure reduces
the buckling load associated with the first buckling mode of the
cracked cylindrical shells.
4. Conclusions

In this paper, we explore the buckling behavior of a cracked
thin cylindrical shell reinforced with an elastic liner subjected to
both pure axial compression and combined axial compression and
internal pressure. We conclude from our study that while elastic
reinforcement significantly improves buckling characteristic of the
structure compared to the unreinforced case, there are significant
differences in buckling behavior depending on crack size, orienta-
tion and the material properties of the shell structure and liner.
We show that in general, circumferential cracks have less detri-
mental effect on the mechanical strength of the liner reinforced
cylindrical shells than axial cracks. Interestingly, the decrease in
buckling strength from a circumferential to an axially oriented
crack was not monotonic. From our numerical calculations we find
that cracks oriented at about 301 from the circumferential direc-
tion showed least decrease in strength, lesser than even the purely
circumferential cracks. However, thereafter, buckling strength
decreased steadily to reach its minima at the axial direction.
Through our extensive parametric studies, we were able to provide
a map depicting the state of buckling in global, local or transition
zone of buckling depending on the relative thickness, relative
stiffness, and the crack orientation. We believe that such transition
maps can be a very useful tool in predicting the type of failure. For
instance, local buckling failure may not cause a catastrophic failure
of the structure but serve as a nucleating site for future interfacial
crack propagation between the liner and the shell structure.
Finally, we study the effect of internal pressure on the buckling
behavior of cracked reinforced cylindrical shells. We find that
internal pressure may stabilize against local buckling by suppres-
sion at the lower internal pressure zone or may precipitate local
buckling of the reinforced cylindrical shells due to stress concen-
tration at higher internal pressure zone depending upon the
elastic and geometric properties of the structure.
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